Answer all questions in the booklets provided. A periodic table is attached.

[12] Question 1

The following data have been obtained at $25^{\circ} \mathrm{C}$ for the anation by Y^{-}of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\left(k_{\mathrm{an}}\right)$ and aquation of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Y}\right]^{\mathrm{n}+}\left(k_{\mathrm{aq}}\right)$.

$\mathbf{Y}^{\mathrm{n}-}$	$\boldsymbol{k}_{\text {an }}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	$\boldsymbol{k}_{\mathrm{aq}}\left(\mathrm{s}^{-1}\right)$
$\mathrm{H}_{2} \mathrm{O}$	8.6×10^{3}	8.6×10^{3}
NCS^{-}	8.0×10^{4}	9.1×10^{3}
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	9.7×10^{2}	5.7×10^{3}
$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$	1.8×10^{6}	7.5×10^{3}
$\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}$	6.7×10^{2}	4.8×10^{3}
$\mathrm{ClCH}_{2} \mathrm{CO}_{2}{ }^{-}$	2.1×10^{5}	9.5×10^{3}

a) What can you say about the intimate mechanism from the data of these two reactions? Explain your answer thoroughly. (3 marks)
b) If you were told that the $\Delta \mathrm{H}^{\ddagger}=+10(\pm 2) \mathrm{kJ} \mathrm{mol}^{-1}$ and $\Delta \mathrm{S}^{\ddagger}=-2(\pm 3) \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ for the anation process when $\mathrm{Y}=\mathrm{NCS}^{-}$, would this help in supporting your conclusion in a)? Why or why not? (3 marks)
c) If you were told that $\Delta \mathrm{V}^{\ddagger}=-5.8 \pm 0.6 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for the anation process when $\mathrm{Y}=\mathrm{NCS}^{-}$, would this help in supporting your conclusion in a)? Why or why not? (2 marks)
d) If you were told that a plot of $\ln k_{\text {an }}$ versus $\ln K_{\text {reaction }}$ had a slope of close to 0.5 would this support your conclusion in a)? Why or why not? (2 marks)
e) Can you draw any conclusions about the stoichiometric mechanism? Explain. (2 marks)

[11] Question 2

a) While substitution in square-planar complexes usually occurs via an associative process (negative values of $\Delta \mathrm{S}^{\neq}$and $\Delta \mathrm{V}^{\neq}$) the rate determining step for substitution may or may not be dependent on the nature of the entering ligand. Explain how this is possible with the aid of a reaction-profile diagram(s). (4 marks)
b) The reaction of cis-[$\left.\mathrm{PtMe}_{2}\left(\mathrm{Me}_{2} \mathrm{~S}=\mathrm{O}\right)\left(\mathrm{PPh}_{3}\right)\right]$ with pyridine (py) leads to cis-[$\left.\mathrm{PtMe}_{2}(\mathrm{py})\left(\mathrm{PPh}_{3}\right)\right]$ and the rate of reaction shows no dependence on the concentration of pyridine. At 298 K , the value of $\Delta \mathrm{S}^{\neq}$is $+24 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Briefly explain these observations. (3 marks)
c) Briefly explain the difference between the trans effect and the trans influence (4 marks).

[14] Question 3

Draw the structure and give the valence electron count for the metal of the following species. (Show your work). (3 marks each)
a) $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}(\mu-\mathrm{CO})_{2} \mathrm{Rh}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}$ (contains Rh-Rh bond)
b) $\mathrm{Ni}\left(\eta^{5}-\mathrm{Cp}\right)_{2} \quad \mathrm{Cp}^{-}=$cyclopentadienyl anion $\left(\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}\right)$
c) $\left[\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Co}\left(\mathrm{CH}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$
d) $\left[\mathrm{IrCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})_{2}\right]^{+}$
e) Which of the above complexes would be most reactive? Why? (2 marks)

[13] Question 4

a) The outer-sphere reduction of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ by $\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]^{5-}$ in benzene is relatively slow (i.e. high $\left.\Delta \mathrm{G}^{\neq}\right)$. Which of the three free-energy of activation terms: $\Delta \mathrm{G}^{\neq}{ }_{\mathrm{OS}} ; \Delta \mathrm{G}^{\neq}{ }_{\mathrm{IS}} ;$ or $\Delta \mathrm{G}^{\neq E}$, do you think would contribute the most to the overall activation energy, $\Delta \mathrm{G}_{\text {total }}^{\neq}$? Why? Explain the relative sizes of the other two energy terms. (6 marks)
b) Would you expect the reaction to speed up or slow down even further if performed in water? Explain. (3 marks)
c) Define the Marcus equation. i.e. What does it predict? How does it predict it? Why is this useful? (4 marks)

