Answer all questions in the booklets provided. A periodic table is attached.

[12] Question 1

The following data have been obtained at 25°C for the anation by Y⁻ of $[Ti(H_2O)_6]^{3+}$ (k_{an}) and aquation of $[Ti(H_2O)_5Y]^{n+}$ (k_{aq}).

Y ⁿ⁻	$k_{\rm an}({\rm M}^{-1}~{\rm s}^{-1})$	$k_{aq} (s^{-1})$
H ₂ O	8.6×10^3	8.6×10^3
NCS ⁻	8.0 x 10 ⁴	9.1 x 10 ³
CH ₃ CO ₂ H	9.7 x 10^2	5.7×10^3
CH ₃ CO ₂	$1.8 \ge 10^6$	7.5×10^3
ClCH ₂ CO ₂ H	6.7×10^2	4.8×10^3
ClCH ₂ CO ₂	2.1×10^5	9.5×10^3

- a) What can you say about the *intimate* mechanism from the data of these two reactions? Explain your answer thoroughly. (3 marks)
- b) If you were told that the $\Delta H^{\ddagger} = +10 (\pm 2) \text{ kJ mol}^{-1}$ and $\Delta S^{\ddagger} = -2 (\pm 3) \text{ J mol}^{-1} \text{ K}^{-1}$ for the anation process when $Y = \text{NCS}^{-}$, would this help in supporting your conclusion in a)? Why or why not? (3 marks)
- c) If you were told that $\Delta V^{\ddagger} = -5.8 \pm 0.6 \text{ cm}^3 \text{ mol}^{-1}$ for the anation process when $Y = NCS^-$, would this help in supporting your conclusion in a)? Why or why not? (2 marks)
- d) If you were told that a plot of lnk_{an} versus lnK_{reaction} had a slope of close to 0.5 would this support your conclusion in a)? Why or why not? (2 marks)
- e) Can you draw *any* conclusions about the *stoichiometric* mechanism? Explain. (2 marks)

[11] Question 2

- a) While substitution in square-planar complexes usually occurs via an *associative* process (negative values of ΔS^{\neq} and ΔV^{\neq}) the *rate determining step* for substitution may or may not be dependent on the nature of the entering ligand. Explain how this is possible with the aid of a reaction-profile diagram(s). (4 marks)
- b) The reaction of *cis*-[PtMe₂(Me₂S=O)(PPh₃)] with pyridine (py) leads to *cis*-[PtMe₂(py)(PPh₃)] and the rate of reaction shows no dependence on the concentration of pyridine. At 298 K, the value of ΔS^{\neq} is +24 J K⁻¹ mol⁻¹. Briefly explain these observations. (3 marks)
- c) Briefly explain the difference between the *trans effect* and the *trans influence* (4 marks).

[14] Question 3

Draw the structure and give the valence electron count for the metal of the following species. (Show your work). (3 marks each)

- a) $(\eta^3-C_3H_5)_2Rh(\mu-CO)_2Rh(\eta^3-C_3H_5)_2$ (contains Rh-Rh bond)
- b) $Ni(\eta^5-Cp)_2$ $Cp^- = cyclopentadienyl anion (C_5H_5^-)$
- c) $[(\eta^{5}-Cp)Co(CH_{3})(PMe_{3})_{2}]^{+}$
- d) $[IrCl_2(PPh_3)_2(CO)_2]^+$
- e) Which of the above complexes would be most reactive? Why? (2 marks)

[13] Question 4

- a) The outer-sphere reduction of $[Cr(H_2O)_6]^{3+}$ by $[Rh(CN)_6]^{5-}$ in benzene is relatively slow (i.e. high ΔG^{\neq}). Which of the three free-energy of activation terms: ΔG^{\neq}_{OS} ; ΔG^{\neq}_{IS} ; or ΔG^{\neq}_{ES} , do you think would contribute the *most* to the overall activation energy, ΔG^{\neq}_{total} ? Why? Explain the relative sizes of the other two energy terms. (6 marks)
- b) Would you expect the reaction to speed up or slow down even further if performed in water? Explain. (3 marks)
- c) Define the Marcus equation. i.e. What does it predict? How does it predict it? Why is this useful? (4 marks)